THE LESS ONE KNOWS ABOUT THE UNIVERSE, THE EASIER IT IS TO EXPLAIN
Have truth and consequences arrived for the biggest energy sham of all?
Energy journalist Robert Bryce recently broke the news to mainstream American media. In a hard-hitting article published in the Wall Street Journal, he reported the findings of a Colorado energy research study, which earlier this year concluded that the industrial wind technology it sampled in the regions of Colorado and Texas neither reduced carbon dioxide (CO2) emissions in the production of electricity nor rolled back consumption of fossil fuels.
The raison d’être of the wind industry is to abate significant levels of the greenhouse gas emissions many feel are causing precipitous and adverse warming trends in the earth’s climate.…
Continue ReadingThis three-part series assesses utility-scale wind’s ability to provide reliable power, a necessary qualification for its use in electricity systems. After Part I’s introduction, Part II dealt with power density, where wind fails to meet today’s standards. This final part will look at the extension to power density, that is, capacity (power) value, which takes into account wind’s randomness and intermittency of supply. Again wind fails to qualify as industrial energy.
Electricity capacity is measured in power terms, for example MW. In this connection it is important to note the importance of the distinction that must be made between capacity factor, capacity credit and capacity value. Compared to capacity value, capacity credit and capacity factor are of small importance. Jon Boone has long called attention to this as follows:
“Modern society exists on a foundation built upon productivity that comes from reliable, controllable, interdependent high-powered machine systems.…
Continue ReadingPart I of this three-part series set the stage for examining intermittent power sources, especially wind, as viable sources of electricity. Part 2 addresses one of the critical power considerations: power density.
In his MasterResource series, Vaclav Smil compared the power densities of a range of fuels for electricity production, which demonstrates the inadequacies of renewables. David MacKay also makes a useful contribution to this topic.[i] Table 1 summarizes the results, which take into account entire fuel cycles, transportation and transmission requirements for a range of assumptions.
Note that all renewable energy sources are ten to over a thousand times less effective than those serving our needs today, with wind providing one of the poorest performances of the renewable sources shown, outside of wood. Areas required for renewables are large because of the dispersed, and often remote, nature of their energy supply.…
Continue Reading