This three-part series assesses utility-scale wind’s ability to provide reliable power, a necessary qualification for its use in electricity systems. After Part I’s introduction, Part II dealt with power density, where wind fails to meet today’s standards. This final part will look at the extension to power density, that is, capacity (power) value, which takes into account wind’s randomness and intermittency of supply. Again wind fails to qualify as industrial energy.
Electricity capacity is measured in power terms, for example MW. In this connection it is important to note the importance of the distinction that must be made between capacity factor, capacity credit and capacity value. Compared to capacity value, capacity credit and capacity factor are of small importance. Jon Boone has long called attention to this as follows:
“Modern society exists on a foundation built upon productivity that comes from reliable, controllable, interdependent high-powered machine systems.…
Part I of this two-part post reviewed most of the considerations that must be understood in evaluating analyses of wind power.
Part II completes this analysis by focusing on one of the most important considerations in the wind utility debate, wind’s capacity value. To this end, I review a paper by Gross et al, which is relied on by Komanoff, and conveniently provides an opportunity for the review of a second paper.
Wind’s Capacity Value
Komanoff uses a flawed analogy by claiming that a backup quarterback contributes value to a team even if he never plays. First, the concept of “never playing” is arguably a reasonable notion with respect to industrial wind power. Second, the analogy applies more correctly to operating reserves, which are needed to fill in for the other generation means if, and when, needed.…