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Abstract 25 

We estimate climate sensitivity from observations, using the deseasonalized fluctuations in sea 26 

surface temperatures (SSTs) and the concurrent fluctuations in the top-of-atmosphere (TOA) 27 

outgoing radiation from the ERBE (1985-1999) and CERES (2000-2008) satellite instruments. 28 

Distinct periods of warming and cooling in the SSTs were used to evaluate feedbacks. An earlier 29 

study (Lindzen RS, Choi Y-S (2009) Geophys. Res. Lett. 36:L16705) was subject to significant 30 

criticisms. The present paper is an expansion of the earlier paper where the various criticisms are 31 

taken into account. The present analysis accounts for the 72 day precession period for the ERBE 32 

satellite in a more appropriate manner than in the earlier paper. We develop a method to distinguish 33 

noise in the outgoing radiation as well as radiation changes that are forcing SST changes from those 34 

radiation changes that constitute feedbacks to changes in SST. We demonstrate that our new method 35 

does moderately well in distinguishing positive from negative feedbacks and in quantifying negative 36 

feedbacks. In contrast, we show that simple regression methods used by several existing papers 37 

generally exaggerate positive feedbacks and even show positive feedbacks when actual feedbacks are 38 

negative. We argue that feedbacks are largely concentrated in the tropics, and the tropical feedbacks 39 

can be adjusted to account for their impact on the globe as a whole. Indeed, we show that including 40 

all CERES data (not just from the tropics) leads to results similar to what are obtained for the tropics 41 

alone – though with more noise. We again find that the outgoing radiation resulting from SST 42 

fluctuations exceeds the zero-feedback response thus implying negative feedback. In contrast to this, 43 

the calculated TOA outgoing radiation fluxes from 11 atmospheric models forced by the observed 44 

SST are less than the zero-feedback response, consistent with the positive feedbacks that characterize 45 

these models. The results imply that the models are exaggerating climate sensitivity. 46 

47 
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1. Introduction 48 

The heart of the global warming issue is so-called greenhouse warming. This refers to the fact that 49 

the earth balances the heat received from the sun (mostly in the visible spectrum) by radiating in the 50 

infrared portion of the spectrum back to space. Gases that are relatively transparent to visible light 51 

but strongly absorbent in the infrared (greenhouse gases) interfere with the cooling of the planet, 52 

forcing it to become warmer in order to emit sufficient infrared radiation to balance the net incoming 53 

sunlight (Lindzen, 1999). By net incoming sunlight, we mean that portion of the sun’s radiation that 54 

is not reflected back to space by clouds, aerosols and the earth’s surface. CO2, a relatively minor 55 

greenhouse gas, has increased significantly since the beginning of the industrial age from about 280 56 

ppmv to about 390 ppmv, presumably due mostly to man’s emissions. This is the focus of current 57 

concerns. However, warming from a doubling of CO2 would only be about 1°C (based on simple 58 

calculations where the radiation altitude and the Planck temperature depend on wavelength in 59 

accordance with the attenuation coefficients of well-mixed CO2 molecules; a doubling of any 60 

concentration in ppmv produces the same warming because of the logarithmic dependence of CO2’s 61 

absorption on the amount of CO2) (IPCC, 2007). 62 

This modest warming is much less than current climate models suggest for a doubling of CO2. 63 

Models predict warming of from 1.5°C to 5°C and even more for a doubling of CO2. Model 64 

predictions depend on the ‘feedback’ within models from the more important greenhouse substances, 65 

water vapor and clouds. Within all current climate models, water vapor increases with increasing 66 

temperature so as to further inhibit infrared cooling. Clouds also change so that their visible 67 

reflectivity decreases, causing increased solar absorption and warming of the earth.  68 

Cloud feedbacks are still considered to be highly uncertain (IPCC, 2007), but the fact that these 69 

feedbacks are strongly positive in most models is considered to be an indication that the result is 70 

basically correct. Methodologically, this is unsatisfactory. Ideally, one would seek an observational 71 

test of the issue. Here we suggest that it may be possible to test the issue with existing data from 72 
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satellites. 73 

Indeed, an earlier study by Forster and Gregory (2006) examined the anomaly of the annual mean 74 

temperature and radiative flux observed from a satellite. However, with the annual time scale, the 75 

signal of short-term feedback associated with water vapor and clouds can be contaminated by 76 

unknown time-varying radiative forcing in nature, and the feedbacks cannot be accurately diagnosed 77 

(Spencer, 2010). Moreover, as we will show later in this paper, the regression approach, itself, is an 78 

important source of bias. In a recent paper (Lindzen and Choi, 2009) we attempted to resolve these 79 

issues though, as has been noted in subsequent papers, the details of that paper were, in important 80 

ways, also incorrect (Trenberth et al., 2010; Chung et al., 2010; Murphy, 2010). There were four 81 

major criticisms to Lindzen and Choi (2009): (i) incorrect computation of climate sensitivity, (ii) 82 

statistical insignificance of the results, (iii) misinterpretation of air-sea interaction in the Tropics, (iv) 83 

misuse of uncoupled atmospheric models. The present paper responds to the criticism, and corrects 84 

the earlier approach where appropriate. The earlier results are not significantly altered, and we show 85 

why these results differ from what others like Trenberth et al. (2010), and Dessler (2010) obtain. 86 

 87 

2. Feedback formalism 88 

    In the absence of feedbacks, the behavior of the climate system can be described by Fig. 1a. ∆Q is 89 

the radiative forcing, G0 is the zero-feedback response function of the climate system, and ∆ T0 is the 90 

response of the climate system in the absence of feedbacks. The checkered circle is a node. Fig. 1a 91 

symbolically shows the temperature increment, ∆T0, that a forcing increment, ∆Q, would produce 92 

with no feedback, 93 

   0 0T G Q∆ = ∆      (1) 94 

It is generally accepted that in the absence of feedback, a doubling of CO2 will cause a forcing of 95 

23.7 WmQ −∆ ≈  and will increase the temperature by ∆T0 ≈ 1.1 K (Hartmann, 1994; Schwartz, 96 
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2007). We therefore take the zero-feedback response function of Eq. (1) to be G0 ≈ 0.3 (=1.1/3.7) K 97 

W−1 m2 for the earth as a whole. 98 

    With feedback, Fig. 1a is modified to Fig. 1b. The response is now 99 

   0 ( )T G Q F T∆ = ∆ + ∆     (2) 100 

    Here F is a feedback function that represents all changes in the climate system (for example, 101 

changes in cloud cover and humidity) that act to increase or decrease feedback-free effects. Thus, F 102 

should not include the zero-feedback (ZFB) response to ∆T that is already incorporated into G0. The 103 

choice of ZFB response for the tropics in Lindzen and Choi (2009) is certainly incorrect in this 104 

respect (Trenberth et al., 2010; Chung et al., 2010). At present, the best choice seems to remain 1/G0 105 

(3.3 W m−2 K−1) (Colman, 2003; Schwartz, 2007). 106 

    Solving Eq. (2) for the temperature increment ∆T and inserting Eq. (1) into Eq. (2) we find 107 

f
TT
−
∆

=∆
1

0                 (3)
 

108 

The dimensionless feedback factor is  f =F G0 . Also, dividing Eq. (2) by G0, we obtain 109 

00 G
TQT

G
f ∆

−∆=∆−     (4) 110 

When looking at the observations, ∆Q and ∆T in Eq. (4) may be replaced by the change in 111 

outgoing net radiative flux, ∆Flux, and the change in sea surface temperature, ∆SST, respectively, 112 

leading to 113 

ZFBFluxSST
0

−∆=∆−
G
f                              (5) 114 

where ZFB indicates the zero-feedback response to ∆SST, i.e., ∆SST/G0. The quantities on the right 115 

side of the equation indicate the amount by which feedbacks supplement ZFB response to ∆Flux. At 116 

this point, it is crucial to recognize that our equations are predicated on the assumption that the ∆SST 117 

to which the feedbacks are responding is produced by ∆Flux. Physically, however, we expect that 118 



 6 

any fluctuation in temperature should elicit the same flux regardless of the origin of temperature 119 

change. Note that the natural forcing, ∆SST, that can be observed, is actually not the same as the 120 

equilibrium response temperature ∆T in Eq. (4). The latter cannot be observed since, for the short 121 

intervals considered, the system cannot be in equilibrium, and over the longer periods needed for 122 

equilibration of the whole climate system, ∆Flux at the top of the atmosphere (TOA) is restored to 123 

zero. The choice of the short intervals may serve to remove some natural time-varying radiative 124 

forcing that contaminates the feedback signal (Spencer and Braswell, 2010). As explained in Lindzen 125 

and Choi (2009), it is essential, that the time intervals considered, be short compared to the time it 126 

takes for the system to equilibrate, while long compared to the time scale on which the feedback 127 

processes operate (which, in the tropics, are essentially the time scales associated with 128 

cumulonimbus convection). The latter is on the order of days, while the former depends on the 129 

climate sensitivity, and ranges from years for sensitivities on the order of 0.5°C for a doubling of 130 

CO2 to many decades for higher sensitivities (Lindzen and Giannitsis, 1998). 131 

The domain of the data is a major issue with critics. Recent papers (Trenberth et al., 2010; Murphy, 132 

2010) argued that quantification of global feedback based on Eq. (5) is inadequate with our tropical 133 

domain (20°S–20°N). The argument makes sense since there is the exchange of energy between the 134 

tropics and the extratropics. To resolve this issue, modification of Eq. (5) is necessary. Allowing the 135 

tropical domain to be an open system that exchanges energy with the rest of the earth, Eq. (5) must 136 

be replaced by 137 

                      
tropics

Gcf 







∆
−∆

−≈
SST

ZFBFlux
0     (6) 138 

where the factor c results from the sharing of the tropical feedbacks over the globe, following the 139 

methodology of Lindzen, Chou and Hou (2001), (hereafter LCH01) and Lindzen, Hou and Farrell 140 

(1982), The methodology developed in LCH01 permits the easy evaluation of the contribution of 141 

tropical processes to the global value. As noted by LCH01, this does not preclude there being 142 
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extratropical contributions as well. In fact, with the global data (available for a limited period only), 143 

the factor c is estimated to be close to unity, so that Eq. (6) is similar to Eq. (5); based on the 144 

independent analysis with the global data (Choi et al., 2011) (results from which will be presented 145 

later in this paper), it is clear that the use of the global data essentially leads to similar results to that 146 

from the tropical data. This similarity is probably due to the concentration of water vapor in the 147 

tropics (more details are given in Section 6). With the tropical data in this study, the factor c is 148 

simply set to 2; that is to say that the contribution of the tropical feedback to the global feedback is 149 

only about half of the tropical feedback. However, we also tested various c values 1.5 to 3 (viz 150 

Section 6); as we will show, the precise choice of this factor c does not affect the major conclusions 151 

of this study. 152 

From Eq. (6), the longwave (LW) and shortwave (SW) contributions to f are given by 153 

tropics
LW c

G
f 








∆
−∆

−=
SST

ZFBOLR0    (7a) 154 

tropics
SW c

G
f 







∆
∆

−=
SST
SWR0     (7b) 155 

Here we can identify ∆Flux as the change in outgoing longwave radiation (OLR) and shortwave 156 

radiation (SWR) measured by satellites associated with the measured ∆SST. Since we know the 157 

value of G0, the experimentally determined slope (the quantity on the right side of Eq. (7)) allows us 158 

to evaluate the magnitude and sign of the feedback factor f provided that we also know the value of 159 

the ZFB response (∆SST/G0 in this study). For observed variations, the changes in radiation 160 

(associated for example with volcanoes or non-feedback changes in clouds) can cause changes in 161 

SST as well as respond to changes in SST, and there is a need to distinguish these two possibilities. 162 

This is less of an issue with model results from AMIP (Atmospheric Model Intercomparison Project) 163 

where observed variations in SST are specified. Of course, there is always the problem of noise 164 

arising from the fact that clouds depend on factors other than surface temperature, and this is true for 165 

AMIP as well as for nature. Note that the noise turns out to be generally greater for larger domains 166 
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that include the extratropics as well as land. Note as well that this study deals with observed outgoing 167 

fluxes, but does not specifically identify the origin of the changes. 168 

 169 

3. The data and their problems 170 

    SST is measured (Kanamitsu et al., 2002), and is always fluctuating (viz. Fig. 2). To relate this 171 

SST to the flux in the entire tropics, the SST anomaly was scaled by a factor of 0.78 (the area 172 

fraction of the ocean to the tropics). High frequency fluctuations, however, make it difficult to 173 

objectively identify the beginning and end of warming and cooling intervals (Trenberth et al., 2010). 174 

This ambiguity is eliminated with a 3 point centered smoother (A two point lagged smoother works 175 

too.). In addition, the net outgoing radiative flux from the earth has been monitored since 1985 by the 176 

ERBE (Earth Radiation Budget Experiment) instrument (Barkstrom, 1984) (nonscanner edition 3) 177 

aboard ERBS (Earth Radiation Budget Satellite) satellite, and since 2000 by the CERES (Clouds and 178 

the Earth’s Radiant Energy System) instrument (ES4 FM1 edition 2) aboard the Terra satellite 179 

(Wielicki et al., 1998). The results for both LW radiation and SW radiation are shown in Fig. 3. The 180 

sum is the net outgoing flux. 181 

    With ERBE data, there is the problem of satellite precession with a period of 72 days, although in 182 

the deep tropics all clock hours are covered in 36 days. In Lindzen and Choi (2009) that used ERBE 183 

data, we attempted to avoid this problem (which is primarily of concern for the short wave radiation) 184 

by smoothing data over 7 months. It has been suggested (Murphy, 2010) that this is excessive 185 

smoothing. In the present paper, we start by taking 36 day means rather than monthly means. The 186 

CERES instrument is flown on a sun-synchronous satellite for which there is no problem with 187 

precession. Thus for the CERES instrument we use the conventional months. However, here too, we 188 

take a 3 point smoothing in the flux data to minimize the effect of noise. This is also why we use the 189 

36-day averaged SST for 1985−1999 and monthly SST for 2000−2008 in Fig. 2. 190 

    The discontinuity between the two datasets requires comment. There is the long-term discrepancy 191 



 9 

of the average which is believed to be due to the absolute calibration problem (up to 3 W m−2) 192 

(Wong et al., 2006). With CERES, we attempt to resolve the spectral darkening problem by 193 

multiplying SW flux by the scale factor (up to 1.011) from Matthews et al. (2005). However, this 194 

long-term stability should not matter for our analysis which only considers fluctuations over a few 195 

months for which the drift is insignificant. There is also the higher seasonal fluctuation in CERES 196 

SW radiation than in ERBE. The bias is up to 6.0 W m−2 as estimated by Young et al. (1998). This is 197 

attributed to different sampling patterns; i.e., ERBS observes all local times over a period of 72 days, 198 

while Terra observes the region only twice per day (around 10:30 AM and 10:30 PM). To avoid this 199 

problem, we reference the anomalies for radiative flux separately to the monthly means for the 200 

period of 1985 through 1989 for ERBE, and for the period of 2000 through 2004 for CERES. 201 

However, the issue of the reference period is also insignificant in this study since we use enough 202 

segments to effectively cancel out this seasonality. 203 

The quality of ERBE and CERES data is best in the tropics for our feedback estimation. For 204 

latitudes 40° to 60°, 72 days are required instead of 36 days to reduce the precession effect (Wong et 205 

al., 2006). Both datasets have no or negligible shortwave radiation in winter hemispheric high 206 

latitudes. Also, the variations of solar irradiation that prevent distinguishing actual SW feedback 207 

always remain in the data partly including the extratropics. Moreover, our analysis involves relating 208 

changes in outgoing flux to changes in SST. This is appropriate to regions that are mostly ocean 209 

covered like the tropics or the southern hemisphere, but distinctly inappropriate to the northern 210 

extratropics. The effect of including extratropical data will, however, be discussed further in Sections 211 

4-6. 212 

Finally, there is the serious issue of distinguishing atmospheric phenomena involving changes in 213 

outgoing radiation that result from processes other than feedbacks (Pinatubo and non-feedback cloud 214 

variations for example) and which cause changes in SST, from those that are caused by changes in 215 

SST (namely the feedbacks we wish to evaluate) (Trenberth et al., 2010; Chung et al., 2010). Our 216 
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crude approach to this is to examine the effect of fluxes with time lags and leads relative to 217 

temperature changes. The lags and leads examined are from one to five months. Our procedure will 218 

be to choose lags that maximize R (the correlation). This is discussed in our section on methodology 219 

(Section 4). To be sure, Fourier transform methods wherein one investigates phase leads and lags 220 

might normally be cleaner, but, given the gaps in the radiation data as well as the incompatibilities 221 

between ERBE and CERES, the present approach which focuses on individual warming and cooling 222 

events seems more appropriate. 223 

    Turning to the models, AMIP is responsible for intercomparing atmospheric models used by the 224 

IPCC (the Intergovernmental Panel on Climate Change); the AMIP models are forced by the same 225 

observed SSTs shown in Fig. 2. We have obtained the calculated changes in both SW and LW 226 

radiation from the AMIP models. These results are shown in Figs. 4 and 5 where the observed results 227 

are also superimposed for comparison. We can already see that there are significant differences. In 228 

addition, we will also consider results from CMIP (the Coupled Model Intercomparison Project), 229 

where coupled ocean-atmosphere models were intercompared. 230 

 231 

4. Methodology 232 

a. Feedback estimation method 233 

    As already noted, the data need to be smoothed first to eliminate the ambiguity in choosing 234 

segments. Then the procedure is simply to identify intervals of maximum change in ∆SST (red and 235 

blue in Fig. 2), and for each such interval, to find the change in flux. The reasoning for this is that, by 236 

definition, a temperature change is required to produce radiative feedback, and so the greatest signal 237 

(and least noise) in the estimation of feedback should be associated with the largest temperature 238 

changes. Thus, it is advisable, but not essential, to restrict oneself to changes greater than 0.1°C; in 239 

fact, the impact of thresholds for ∆SST on the statistics of the results turns out, however, to be minor 240 

(Lindzen and Choi, 2009). 241 
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Let us define t1, t2,…, tm as selected time steps that correspond to the starting and the ending points 242 

of intervals. Again, for stable estimation of ∆Flux/∆SST, the time steps should be selected based on 243 

the maximum and minimum of the ‘smoothed’ SST. In addition, if the maximum and minimum of 244 

the smoothed SST appear at contiguous points or at points with no flux data (Fig. 3), we disregarded 245 

them (black in Fig. 2). Specifically, we disregarded the beginning of the time series since the start 246 

point of warming cannot be determined. Also, we disregarded the end of the time series since there 247 

was missing data in radiative flux. Note that these disregarded periods include some intervals (e.g., 248 

the cooling SST in 1998) used in Lindzen and Choi (2009) where they selected neighboring end 249 

points to avoid the missing flux data. 250 

∆Flux/∆SST can be obtained by Flux(ti+1) − Flux(ti) divided by SST(ti+1) − SST(ti) where ti is ith 251 

selected time steps (i = 1, 2, …, m−1). As there are many intervals, the final ∆Flux/∆SST is a 252 

regression slope for the plots (∆Flux, ∆SST) for a linear regression model. Here we use a zero y-253 

intercept model (y = ax) because the presence of the y-intercept is related to noise other than 254 

feedbacks. Thus, a zero y-intercept model may be more appropriate for the purpose of our feedback 255 

analysis though the choice of regression model turns out to also be minor in practice. 256 

One must also distinguish ∆SST’s that are forcing changes in ∆Flux, from responses to ∆Flux. 257 

Otherwise, ∆Flux/∆SST can have fluctuations (as found by Trenberth et al., 2010 and Dessler, 2010, 258 

for example) that may not represent feedbacks that we wish to determine. The results from Trenberth 259 

et al. (2010) and Dessler (2010) were, in fact, ambiguous as well because of the very low correlation 260 

of their regression of ∆F on ∆SST. To avoid the causality problem, we use a lag-lead method (e.g., 261 

use of Flux(t+lag) and SST(t)) for ERBE 36-day and CERES monthly smoothed data). In general, 262 

the use of leads for flux will emphasize forcing by the fluxes, and the use of lags will emphasize 263 

responses by the fluxes to changes in SST. 264 

The above procedures help to obtain a more accurate and objective climate feedback factor than 265 

the use of original monthly data. As we will show below, this was tested by a Monte-Carlo test of a 266 



 12 

simple feedback-forcing model. 267 

 268 

b. Simple model analysis 269 

Following Spencer and Braswell (2010), we assume an hypothetical climate system with uniform 270 

temperature and heat capacity, for which SST and forcing are time-varying. Then the model equation 271 

of the system is 272 

)(SST)(SST tFtQ
dt

d
pC ∆⋅−=



 ∆   (8) 273 

where Cp is the bulk heat capacity of the system (14 yr W m−2 K−1 in this study, from Schwartz, 274 

2007); ∆SST is SST deviation away from an equilibrium state of energy balance; F is the feedback 275 

function that is the same as the definition in Eq. (2); Q is any forcing that changes SST (Forster and 276 

Gregory, 2006; Spencer and Braswell, 2010). Q consists in three components: (i) Q1=external 277 

radiative forcing (e.g., from anthropogenic greenhouse gas emission.), (ii) Q2=internal non-radiative 278 

forcing (from heat transfer from the ocean, for example), and (iii) Q3=internal radiative forcing (e.g., 279 

from water vapor or clouds.). Among the three forcings, the two external and internal ‘radiative’ 280 

forcings, and F⋅∆SST(t) constitute TOA net radiative flux anomaly; i.e., ∆Flux= F⋅∆SST(t)-281 

[Q1(t)+Q3(t)]. 282 

The model system was basically forced by random internal non-radiative forcing changing SST (ie, 283 

Q2). The system was also forced by random internal radiative forcing (ie, Q3). For this preliminary 284 

test, normally distributed random numbers with zero mean were inserted into Q1 and Q2.; we 285 

anticipate using forcing with realistic atmospheric or oceanic spectra in future tests. Here the 286 

variance of internal non-radiative forcing is set to 5 and the variance of internal radiative forcing is 287 

set to 0.7. Hence, the ratio of variances of the two forcings is 14% (hereafter the noise level). These 288 

settings generally give simulated ∆SST and ∆Flux with similar variances to the observed, The 289 

simulated variances are, however, subject to model representation as well. Finally the system was 290 
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additionally forced by transient external radiative forcing (0.4 W m−2 per decades due to increasing 291 

CO2) (Spencer and Braswell, 2010). Integration is done at monthly time steps1

The difference between the simple regression and our method is statistically significant by a 299 

Monte-Carlo test (10,000 repetitions). Fig. 7 shows the probability density functions of the estimated 300 

∆Flux/∆SST, and compares with the three true F values (1, 3.3, and 6 W m−2 K−1) that were specified 301 

for the model. We do not rule out the possibilities that both methods fail to estimate the actual 302 

feedback (the tail of the density functions), but we see clearly that the simple regression always 303 

underestimates negative feedbacks and exaggerates positive feedbacks. This is seen more clearly in 304 

Table 1 which shows the central values of gain and feedback factors for both the simple regressions 305 

and for the lag-lead approach (LC). The simple regression even finds fairly large positive feedbacks 306 

when the actual feedback is negative. This bias is, at least, partially because the simple regression 307 

includes time intervals that approach equilibration time, and at equilibrium, we would have a ∆SST 308 

with no ∆Flux. 309 

. We used Runge-292 

Kutta 4th order method for numerical solution of randomly forced system, Eq. (8) (Machiels and 293 

Deville, 1998). Fig. 6 compares the simple regression method and our method for the feedback 294 

function F = 6 W m−2 K−1 (it indicates negative feedback as it is larger than Planck response 3.3 W 295 

m−2 K−1). The maximum R occurs at small (zero or a month) lag and the corresponding ∆Flux/∆SST 296 

(5.7 W m−2 K−1) is close to the assumed F (6 W m−2 K−1), whereas the simple regression method 297 

underestimates F (3.2 W m−2 K−1).  298 

By contrast, our method shows moderately good performance for estimating the feedback 310 

parameter especially for significant negative feedbacks (comparable to what we observe in the data). 311 

The system with smaller F generates the sinusoidal shape of the slopes with respect to lags, so that it 312 

turns out to have maximum R at larger lag. In this case, the estimated climate feedbacks are the 313 

                                                 
1 It is also possible to integrate at daily time steps, and degrade the time series to the monthly 
averages without significantly changing the results – suggesting that the coarser time resolution is 
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lagged response though estimates are less reliable than when maximum R occurs at near-zero lag 314 

(Fig. 8). Therefore, for the system with smaller F our method is less efficient, and the true value is in 315 

between the simple regression and our method. This is also the case for the system with the same F 316 

with an increased noise level (Fig. 8). That is to say, the longer the lag needed to maximize R, the 317 

more our method overestimates F. This may be because the lagged response is attributed to both 318 

feedback and noise, and heavier noise at longer lag unduly raises the slope. Regardless of feedback 319 

strength, with either no internal (cloud-induced) radiative change or the prescribed temperature 320 

variation, ∆Flux/∆SST at zero lag (with maximum R) is always identical to the assumed F. Thus 321 

AMIP systematically shows maximum R at zero lag, while CMIP does not; thus, the use of AMIP 322 

seems more appropriate in estimating model feedback than the use of CMIP. 323 

An example of a comparison of simple regression with our lead-lag approach is taken from Choi et 324 

al. (2011). Here we compared the use of the simple regression approach with our approach for the 325 

complete CERES data set used by Dessler (2010). The results are shown in Fig. 9 where we 326 

separately show the impact of using segments (as opposed to the continuous record as was done by 327 

Dessler, 2010) and the use of lead-lag as opposed to simple regression. The former serves mainly to 328 

greatly increase the correlation (r2) from the negligible value obtained by Dessler (2010); the latter 329 

leads to a significant negative feedback as opposed to the weak and insignificant positive feedback 330 

claimed by Dessler (2010). We will discuss these results later in connection with our emphasis on 331 

tropical data.  Recall, that this example considers data from all latitudes covered by CERES.  332 

However, it should be emphasized that even Dessler’s treatment of the data leads to negative 333 

feedback when lags are considered. 334 

 335 

5. Results 336 

a. Climate sensitivity from observations and comparison to AMIP models 337 

                                                                                                                                                                    
adequate for our purposes.  



 15 

Given the above, it is now possible to directly test the ability of models to adequately simulate the 338 

sensitivity of climate (see Methodology, Section 4). Fig. 10 shows the impact of smoothing and leads 339 

and lags on the determination of the slope as well as on the correlation, R, of the linear regression. 340 

For LW radiation, the situation is fairly simple. Smoothing increases R somewhat, and for 3 point 341 

symmetric smoothing, R maximizes for slight lag or zero – consistent with the fact that feedbacks are 342 

expected to result from fast processes. Maximum slope is found for a lag of 1 ‘month’, though it 343 

should be remembered that the relevant feedback processes may operate on a time scale shorter than 344 

we resolve. The situation for SW radiation is, not surprisingly, more complex since phenomena like 345 

the Pinatubo eruption and non-feedback cloud fluctuations lead to changes in SW reflection and 346 

associated fluctuations in surface temperature.  347 

We see two extrema associated with changing lead/lag. There is a maximum negative slope 348 

associated with a brief lead, and a relatively large positive slope associated with a 3−4 month lag. 349 

The lags in SW that maximize R are rather long compared to what we get with the simple model. 350 

This is because the simple model is of total radiation with Planck response. Consistently, the 351 

summation of LW and SW radiations presents a shorter lag. It seems reasonable to suppose that the 352 

effect of anomalous forcing extends into the results at small lags because it takes time for the ocean 353 

surface to respond, and is only overcome for larger lags where the change in flux associated with 354 

feedback dominates. Indeed, excluding the case of the Pinatubo volcano for larger lags does little to 355 

change the results (less than 0.3 W m−2 K−1). Under such circumstances, we expect the maximum 356 

slope for SW radiation in Fig. 10 to be an underestimate of the actual feedback (for reasons we 357 

discussed in Section 4b). We also consider the standard error of the slope to show data uncertainty. 358 

The results for the lags associated with maximum R are shown in Table 2. We take LW and SW 359 

radiation for lag = 1 and lag = 3, respectively, and measure the slope ∆Flux/∆SST for the sum of 360 

these fluxes. The standard error of the slope in total radiation for the appropriate lags comes from the 361 

regression for scatter plots of (∆SST, ∆(OLR+SWR)). With the slope and its standard error, the 362 
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feedback factors for LW, SW, and total radiation (fSW, fLW, and fTotal) are obtained via Eqs. (6) and (7). 363 

Finally, with fTotal, the equilibrium climate sensitivity for a doubling of CO2 is obtained via Eq. (3). 364 

Here the statistical confidence intervals of the sensitivity estimate at 90%, 95%, and 99% levels are 365 

also calculated by the standard error of the feedback factor fTotal. This interval should prevent any 366 

problems arising from limited sampling. As a result, the climate sensitivity for a doubling of CO2 is 367 

estimated to be 0.7K (with the confidence interval 0.5K−1.3K at 99% levels). This observational 368 

result shows that model sensitivities indicated by the IPCC AR4 are likely greater than the 369 

possibilities estimated from the observations. 370 

We next wish to see whether the outgoing fluxes from the AMIP models are consistent with the 371 

sensitivities in IPCC AR4. To the AMIP results, for which there was less ambiguity as to whether 372 

fluxes constituted a response (noise still exists due to autonomous cloud fluctuations), the same 373 

approach as that for the observations was applied. Maximum R occurs at zero lag in both LW and 374 

SW radiation, so we simply chose the AMIP fluxes without lag. The results are shown in Table 3. In 375 

contrast to the observed fluxes, the implied feedbacks in the models are all positive, and in one case, 376 

marginally unstable. Given the uncertainties, however, one should not take that too seriously. 377 

    Table 4 compares the climate sensitivities in degrees K for a doubling of CO2 implied by feedback 378 

factors f in Table 3 with those in IPCC AR4. To indicate statistical significance of our results 379 

obtained from limited sampling, we also calculated the confidence intervals of the climate sensitivity 380 

using the standard errors of f in Table 3. All the sensitivities in IPCC AR4 are within the 90% 381 

confidence intervals of our sensitivity estimates. The agreement does not seem notable, but this is 382 

because, for positive feedbacks, sensitivity is strongly affected by small changes in f that are 383 

associated standard errors in Table 3. Consequently, the confidence intervals include “infinity”. This 384 

is seen in Fig. 11 in the pink region. It has, in fact, been suggested by Roe and Baker (2007), that this 385 

sensitivity of the climate sensitivity to uncertainty in the feedback factor is why there has been no 386 

change in the range of climate sensitivities indicated by GCMs since the 1979 Charney Report 387 
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(1979). By contrast, in the green region, which corresponds to the observed feedback factors, 388 

sensitivity is much better constrained. 389 

While the present analysis is a direct test of feedback factors, it does not provide much insight into 390 

detailed mechanism. Nevertheless, separating the contributions to f from long wave and short wave 391 

fluxes provides some interesting insights. The results are shown in Tables 2 and 3. It should be noted 392 

that the consideration of the zero-feedback response, and the tropical feedback factor to be half of the 393 

global feedback factor is actually necessary for our measurements from the Tropics; however, these 394 

were not considered in Lindzen and Choi (2009). Accordingly, with respect to separating longwave 395 

and shortwave feedbacks, the interpretation by Lindzen and Choi (2009) needs to be corrected. These 396 

tables show recalculated feedback factors in the presence of the zero-feedback Planck response. The 397 

negative feedback from observations is from both longwave and shortwave radiation, while the 398 

positive feedback from models is usually but not always from longwave feedback. 399 

    As concerns the infrared, there is, indeed, independent evidence for a positive water vapor 400 

feedback (Soden et al., 2005), but, if this is true, this feedback is presumably cancelled by a negative 401 

infrared feedback such as that proposed by LCH01 on the iris effect. In the models, on the contrary, 402 

the long wave feedback appears to be positive (except for two models), but it is not as great as 403 

expected for the water vapor feedback (Colman, 2003; Soden et al., 2005). This is possibly because 404 

the so-called lapse rate feedback as well as negative longwave cloud feedback acting to cancel some 405 

of the TOA OLR feedback in current models. Table 3 implies that TOA longwave and shortwave 406 

contributions are coupled in models (the correlation coefficient between fLW and fSW from models is 407 

about −0.5.). This coupling most likely is associated with the primary clouds in models  optically 408 

thick high-top clouds (Webb et al., 2006). In most climate models, the feedbacks from these clouds 409 

are simulated to be negative in longwave and strongly positive in shortwave, and dominate the entire 410 

model cloud feedback (Webb et al., 2006). Therefore, the cloud feedbacks may also serve to 411 

contribute to the negative OLR feedback and the positive SWR feedback. New spaceborne data from 412 
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the CALIPSO lidar (CALIOP; Winker et al., 2007) and the CloudSat radar (CPR; Im et al., 2005) 413 

should provide a breakdown of cloud behavior with altitude which may give some insight into what 414 

actually is contributing to the radiation. 415 

 416 

b. Comparison to CMIP models and their limitations 417 

It has been argued that CMIP models are more appropriate for the present purpose since the 418 

uncoupled AMIP models are prescribed with incomplete forcings of SST (Trenberth et al., 2010). 419 

However, it is precisely for this reason that AMIP models are preferred for feedback estimates. Note 420 

that we are considering atmospheric feedbacks to SST fluctuations. As already seen, in analyzing 421 

observed behavior, the presence of SST variations that are primarily caused by atmospheric changes 422 

(from volcanoes, non-feedback cloud variations, etc.) leads to difficulty in distinguishing SST 423 

variations that are primarily forcing atmospheric changes (i.e., feedbacks). This situation is much 424 

simpler with AMIP results since we can be sure that SST variations (which are forced to be the same 425 

as observed SST) cannot respond to atmospheric changes. The fact that CMIP SST variations are 426 

significantly different from observed SST variations further makes it unlikely that the model 427 

atmospheric processes are implicitly forcing the SST’s used for AMIP. Note that important ocean 428 

phenomena such as El Niño-Southern Oscillation and Pacific Decadal Oscillation are generally 429 

misrepresented by CMIP models. As noted, AMIP results are still subject to noise since outgoing 430 

radiation includes changes associated with non-feedback cloud variations. 431 

In applying our methodology to CMIP, we see that coupled models differ in the behavior of SST, 432 

and the intervals of SST must be selected differently for different models. Some models have much 433 

smaller variability of SST than nature and only a few intervals of SST could be selected. As we see 434 

in Fig. 12, the CMIP results (black dots) display behavior somewhat similar to ERBE and CERES 435 

results (red open circles) with respect to lags. However, when identifying each number, we found 436 

that the results are quantitatively ambiguous. The slope ∆OLR/∆SST for lag = 1 is between 0.6 and 437 
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5.8 though it remains robust that LW feedbacks in most models are higher than nature. Not 438 

surprisingly, the inconsistent LW feedback was also shown in previous studies (Tsushima et al., 439 

2005; Forster and Gregory, 2006; Forster and Taylor, 2006). The slope ∆SWR/∆SST for lag = 3 is 440 

between −3.4 and 3.9 so that one cannot meaningfully determine the feedback in the models. These 441 

values, moreover, do not correspond well to the independently known model climate sensitivities in 442 

IPCC AR4. Based on our simple model (viz Section 4b of Methodology), this ambiguity results 443 

mainly from non-feedback internal radiative (cloud-induced) change that changes SST. Also, such 444 

cloud-induced radiative change can generate the anomalous sinusoidal shape of the slopes 445 

∆SWR/∆SST with respect to lags as shown in Fig. 12. Therefore, previous studies that use the slopes 446 

∆SWR/∆SST at zero lag (Tsushima et al., 2005; Forster and Gregory, 2006; Trenberth et al., 2010) 447 

may misinterpret SW feedback. This confirms that for more accurate estimation of ‘model’ 448 

feedbacks, AMIP models are more appropriate than CMIP models. Furthermore, nature is better than 449 

CMIP for SST simply because nature properly displays the real magnitude of SST forcing and the 450 

associated atmospheric changes. 451 

 452 

6. Conclusions and discussions 453 

We have corrected the approach of Lindzen and Choi (2009), based on all the criticisms made of 454 

the earlier work (Trenberth et al., 2010; Chung et al., 2010; Murphy, 2010). First of all, to improve 455 

the statistical significance of the results, we supplemented ERBE data with CERES data, filtered out 456 

data noise with 3-month smoothing, objectively chose the intervals based on the smoothed data, and 457 

provided confidence intervals for all sensitivity estimates. These constraints helped us to more 458 

accurately obtain climate feedback factors than with the original use of monthly data. Next, our new 459 

formulas for climate feedback and sensitivity reflect sharing of tropical feedback with the globe, so 460 

that the tropical region is now properly identified as an open system. Last, the feedback factors 461 

inferred from the atmospheric models are more consistent with IPCC-defined climate sensitivity than 462 
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those from the coupled models. This is because, in the presence of cloud-induced radiative changes 463 

altering SST, the climate feedback estimates by the present approach tends to be inaccurate. With all 464 

corrections, the conclusion still appears to be that all current models seem to exaggerate climate 465 

sensitivity (some greatly).  Moreover, we have shown why studies using simple regressions of ∆Flux 466 

on ∆SST serve poorly to determine feedbacks. 467 

To respond to the criticism of our emphasis on the tropical domain (Trenberth et al., 2010; 468 

Murphy, 2010), we analyzed the complete record of CERES for the globe (Dessler, 2010) (Note that 469 

ERBE data is not available for the high latitudes since the field-of-view is between 60°S and 60°N). 470 

As seen in the previous section, the use of the global CERES record leads to a result that is basically 471 

similar to that from the tropical data in this study . The global CERES record, however, contains 472 

more noise than the tropical record. 473 

This result lends support to the argument that the water vapor feedback is primarily restricted to 474 

the tropics, and there are reasons to suppose that this is also the case for cloud feedbacks. Although, 475 

in principle, climate feedbacks may arise from any latitude, there are substantive reasons for 476 

supposing that they are, indeed, concentrated mostly in the tropics. The most prominent model 477 

feedback is that due to water vapor, where it is commonly noted that models behave roughly as 478 

though relative humidity were fixed. Pierrehumbert (2009) examined outgoing radiation as a function 479 

of surface temperature theoretically for atmospheres with constant relative humidity. His results are 480 

shown in Fig. 13. 481 

    Specific humidity is low in the extratropics, while it is high in the tropics. We see that for 482 

extratropical conditions, outgoing radiation closely approximates the Planck black body radiation 483 

(leading to small feedback). However, for tropical conditions, increases in outgoing radiation are 484 

suppressed, implying substantial positive feedback. There are also reasons to suppose that cloud 485 

feedbacks are largely confined to the tropics. In the extratropics, clouds are mostly stratiform clouds 486 

that are associated with ascending air while descending regions are cloud-free. Ascent and descent 487 
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are largely determined by the large scale wave motions that dominate the meteorology of the 488 

extratropics, and for these waves, we expect approximately 50% cloud cover regardless of 489 

temperature (though details may depend on temperature). On the other hand, in the tropics, upper 490 

level clouds, at least, are mostly determined by detrainment from cumulonimbus towers, and cloud 491 

coverage is observed to depend significantly on temperature (Rondanelli and Lindzen, 2008). 492 

As noted by LCH01, with feedbacks restricted to the tropics, their contribution to global 493 

sensitivity results from sharing the feedback fluxes with the extratropics. This led to inclusion of the 494 

sharing factor c in Eq. (6). The choice of a larger factor c leads to a smaller contribution of tropical 495 

feedback to global sensitivity, but the effect on the climate sensitivity estimated from the observation 496 

is minor. For example, with c = 3, climate sensitivity from the observation and the models is 0.8 K 497 

and a higher value (between 1.3 K and 6.4 K), respectively. With c = 1.5, global equilibrium 498 

sensitivity from the observation and the models is 0.6 K and any value higher than 1.6 K, 499 

respectively. Note that, as in LCH01, we are not discounting the possibility of feedbacks in the 500 

extratropics, but rather we are focusing on the tropical contribution to global feedbacks. Note that, 501 

when the dynamical heat transports toward the extratropics are taken into account, the overestimation 502 

of tropical feedback by GCMs may lead to even greater overestimation of climate sensitivity (Bates, 503 

2011). This emphasizes the importance of the tropical domain itself. 504 

Our analysis of the data only demands relative instrumental stability over short periods, and is 505 

largely independent of long term drift. Concerning the different sampling from the ERBE and 506 

CERES instruments, Murphy et al. (2009) repeated the Forster and Gregory (2006) analysis for the 507 

CERES and found very different values than those from the ERBE. However, in this study, the 508 

addition of CERES data to the ERBE data does little to change the results for ∆Flux/∆SST – except 509 

that its value is raised a little (as is also true when only CERES data is used.). This may be because 510 

these previous simple regression approaches include the distortion of feedback processes by 511 

equilibration. In distinguishing a precise feedback from the data, the simple regression method is 512 
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dependent on the data period, while our method is not. The simple regression result in Fig. 7 is worse 513 

if the model integration time is longer (probably due to the greater impact of increasing radiative 514 

forcing). 515 

    Our study also suggests that, in current coupled atmosphere-ocean models, the atmosphere and 516 

ocean are too weakly coupled since thermal coupling is inversely proportional to sensitivity (Lindzen 517 

and Giannitsis, 1998). It has been noted by Newman et al. (2009) that coupling is crucial to the 518 

simulation of phenomena like El Niño. Thus, corrections of the sensitivity of current climate models 519 

might well improve the behavior of coupled models, and should be encouraged. It should be noted 520 

that there have been independent tests that also suggest sensitivities less than predicted by current 521 

models. These tests are based on the response to sequences of volcanic eruptions (Lindzen and 522 

Giannitsis, 1998), on the vertical structure of observed versus modeled temperature increase  523 

(Lindzen, 2007; Douglass, 2007), on ocean heating (Schwartz, 2007; Schwartz, 2008), and on 524 

satellite observations (Spencer and Braswell, 2010). Most claims of greater sensitivity are based on 525 

the models that we have just shown can be highly misleading on this matter. There have also been 526 

attempts to infer sensitivity from paleoclimate data (Hansen et al., 1993), but these are not really 527 

tests since the forcing is essentially unknown given major uncertainties in clouds,dust loading and 528 

other factors.  Finally, we have shown that the attempts to obtain feedbacks from simple regressions 529 

of satellite measured outgoing radiation on SST are inappropriate. 530 

    One final point needs to be made. Low sensitivity of global mean temperature anomaly to global 531 

scale forcing does not imply that major climate change cannot occur. The earth has, of course, 532 

experienced major cool periods such as those associated with ice ages and warm periods such as the 533 

Eocene (Crowley and North, 1991). As noted, however, in Lindzen (1993), these episodes were 534 

primarily associated with changes in the equator-to-pole temperature difference and spatially 535 

heterogeneous forcing. Changes in global mean temperature were simply the residue of such changes 536 

and not the cause. 537 
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Table Legends 634 

Table 1. Summary of simple model simulation results shown in Fig. 7. The gain is 1/G0 divided by 635 

the averaged F. Note that the averaged F is larger than the value of the most frequent occurrence for 636 

the simple regression method. 637 

Table 2. Mean±standard error of the variables for the likely lag for the observations. The units for 638 

the slope are W m−2 K−1. Also shown are the estimated mean and range of equilibrium climate 639 

sensitivity (in K) for a doubling of CO2 for 90%, 95%, and 99% confidence levels. The numbers are 640 

basically calculated to the second decimal place, and then presented as the first decimal place in this 641 

table. The mean fTotal is actually −0.54. 642 

Table 3. Regression statistics between ∆Flux and ∆SST and the estimated feedback factors (f) for 643 

LW, SW, and total radiation in AMIP models; the slope is ∆Flux/∆SST, N is the number of the 644 

points or intervals, R is the correlation coefficient, and SE is the standard error of ∆Flux/∆SST.  645 

Table 4. Comparison of model equilibrium climate sensitivities (in K) for a doubling of CO2 defined 646 

from IPCC AR4 and estimated from feedback factors in this study. The obvious difference between 647 

two columns labeled ‘sensitivity’ is discussed in more detail in the last paragraph of section 3.1. The 648 

estimated climate sensitivities for models as well as their confidence intervals are given for 90%, 649 

95%, and 99% confidence levels. 650 

651 
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Table 1 652 
True values LC Simple regression 

Gain f Gain f Gain f 
0.55  −0.80  0.52  −0.92  0.66  −0.51  
1.00  0.00  0.83  −0.21  1.42  0.29  
3.30  0.68  1.53  0.34  23.57  0.94  

 653 
Table 2 654 
 Variables  Comments 
a Slope, LW 5.3±1.3 Lag = 1 
b Slope, SW 1.9±2.6 Lag = 3 
c Slope, Total 6.9±1.8 = a+b for the same SST interval 
d fLW −0.3±0.2 Calculated from a 
e fSW −0.3±0.4 Calculated from b 
f fTotal −0.5±0.3 Calculated from c 
g Sensitivity, mean 0.7 Calculated from f 
h Sensitivity, 90% 0.6−1.0 Calculated from f 
i Sensitivity, 95% 0.5−1.1 Calculated from f 
j Sensitivity, 99% 0.5−1.3 Calculated from f 
 655 
Table 3 656 
   LW SW LW+SW 
  N Slope R SE fLW Slope R SE fSW Slope R SE f 
CCSM3 17 1.2 0.4  2.0  0.3  −3.7  −0.9  1.0  0.6  −2.5 −0.5  2.2  0.9  
ECHAM5/MPI-OM 16 1.1 0.4  1.6  0.3  −0.1  0.0  1.9  0.0  1.0 0.3  2.1  0.3  
FGOALS-g1.0 16 0.4 0.2  1.2  0.4  −2.8  −0.8  1.0  0.4  −2.4 −0.6  1.4  0.9  
GFDL-CM2.1 16 2.1 0.8  0.9  0.2  −2.1  −0.4  2.4  0.3  0.0 0.0  2.0  0.5  
GISS-ER 21 3.2 0.8  1.1  0.0  −3.7  −0.6  1.8  0.6  −0.5 −0.1  1.3  0.6  
INM-CM3.0 23 2.7 0.6  1.4  0.1  −3.4  −0.7  1.3  0.5  −0.7 −0.1  1.8  0.6  
IPSL-CM4 21 −0.4 −0.1  1.1  0.6  −2.3  −0.5  1.6  0.3  −2.7 −0.5  1.7  0.9  
MRI-CGCM2.3.2 21 −0.8 −0.3  1.3  0.6  −3.8  −0.6  2.5  0.6  −4.7 −0.7  2.5  1.2  
MIROC3.2(hires) 21 2.4 0.6  1.4  0.1  −2.4  −0.7  1.4  0.4  0.0 0.0  1.3  0.5  
MIROC3.2(medres) 21 3.4 0.8  1.0  0.0  −3.6  −0.7  2.0  0.5  −0.3 −0.1  1.6  0.5  
UKMO-HadGEM1 17 4.4 0.8  2.2  −0.2  −3.6  −0.7  1.5  0.5  0.8 0.2  2.1  0.4  
 657 
Table 4 658 
Models IPCC AR4 Estimate in this study 
 Sensitivity Sensitivity Confidence interval of sensitivity 

90% 95% 99% 
CCSM3 2.7 8.1 1.6 – Infinity 1.4 – Infinity 1.1 – Infinity 
ECHAM5/MPI-OM 3.4 1.7  0.9 – 8.0 0.9 – 28.2 0.8 – Infinity 
FGOALS-g1.0 2.3 7.9  2.2 – Infinity 2.0 – Infinity 1.6 – Infinity 
GFDL-CM2.1 3.4 2.2  1.1 – 351.4 1.0 – Infinity 0.8 – Infinity 
GISS-ER 2.7 2.5  1.5 – 8.7 1.4 – 16.4 1.2 – Infinity 
INM-CM3.0 2.1 2.7  1.3 – Infinity 1.2 – Infinity 1.0 – Infinity 
IPSL-CM4 4.4 10.4  2.1 – Infinity 1.8 – Infinity 1.4 – Infinity 
MRI-CGCM2.3.2 3.2 Infinity 2.5 – Infinity 2.0 – Infinity 1.4 – Infinity 
MIROC3.2(hires) 4.3 2.2  1.3 – 6.4 1.2 – 10.0 1.1 – Infinity 
MIROC3.2(medres) 4 2.4  1.3 – 14.7 1.2 – Infinity 1.0 – Infinity 
UKMO-HadGEM1 4.4 1.7  1.0 – 8.8 0.9 – 38.9 0.8 – Infinity 
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Figure Legends 660 

Fig. 1. A schematic for the behavior of the climate system in the absence of feedbacks (a), in the 661 

presence of feedbacks (b). 662 

Fig. 2. Tropical mean (20°S to 20°N latitude) 36-day averaged and monthly sea surface temperature 663 

anomalies with the centered 3-point smoothing; the anomalies are referenced to the monthly means 664 

for the period of 1985 through 1989. Red and blue colors indicate the major temperature fluctuations 665 

exceeding 0.1°C used in this study. The cooling after 1998 El Niño is not included because of no flux 666 

data is available for this period (viz. Fig. 3). 667 

Fig. 3. The same as Fig. 2 but for outgoing longwave (red) and reflected shortwave (blue) radiation 668 

from ERBE and CERES satellite instruments. 36-day averages are used to compensate for the ERBE 669 

precession. The anomalies are referenced to the monthly means for the period of 1985 through 1989 670 

for ERBE, and 2000 through 2004 for CERES. Missing periods are the same as reported in ref. 17. 671 

Fig. 4 Comparison of outgoing longwave radiation from AMIP models (black) and the observations 672 

(red) shown in Fig. 3. 673 

Fig. 5 Comparison of reflected shortwave radiation from AMIP models (black) and the observations 674 

(blue) shown in Fig. 3. 675 

Fig. 6. Comparison between simple regression method and the method used in this study, based on 676 

simple model results. 677 

Fig. 7. Probability density function of simple model simulation results (10,000 repeats) for the 678 

feedback parameter F = 1, 3.3, and 6 Wm−2K−1 (blue dotted line). The black line is from the simple 679 

regression, and the red line is from the methodology in this study. Note that, in the case of 'true' 680 

positive feedback, the LC method shows an insignificant indication of a negative feedback. The 681 

means of the lags with maximum R selected in our method are also noted. 682 

Fig. 8. The relationship between the estimated feedback parameter F, the lags with maximum R, and 683 

the noise level (in %). 684 
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Fig. 9. (a) Scatter plots and regression lines of radiative flux variation by clouds (ΔRcloud) versus ΔT 685 

from CERES and ECMWF interim data used in Dessler (2010). ΔRcloud and ΔT values are calculated 686 

by taking (black) original monthly anomaly data, and (red) the method in this study. (b) The slopes 687 

and their one-σ uncertainties of lagged linear regressions of ΔRcloud versus ΔTs; the numbers indicate 688 

lagged linear correlation coefficients [Taken from Choi et al. (2011)]. 689 

Fig. 10. The impact of smoothing and leads and lags on the determination of the slope (top) as well 690 

as on the correlation coefficient, R, of the linear regression (bottom). 691 

Fig. 11.  Sensitivity vs. feedback factor. 692 

Fig. 12. Same as Fig. 4, but for the 10 CMIP models (black dots); GISS model was excluded because 693 

only few intervals of SST are obtained. The values for the 3-month smoothing in Fig. 4 are 694 

superimposed by red dots.  695 

Fig. 13. OLR vs. surface temperature for water vapor in air, with relative humidity held fixed. The 696 

surface air pressure is 1bar. The temperature profile is the water/air moist adiabat. Calculations were 697 

carried out with the Community Climate Model radiation code (Pierrehumbert, 2009). 698 
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Figure 2 705 
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Figure 3 708 
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Figure 4 711 
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Figure 5 713 

714 



 37 

 715 

Figure 6 716 
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Figure 7 719 
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Figure 8 722 

723 



 40 

 724 

Figure 9725 



 41 

 726 

 727 

Figure 10 728 
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Figure  11 731 
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